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1 Background and Motivation

Using auctions to award contracts to supply goods and services is now pervasive in many indus-
tries, e.g. electronics industry procurements, government defence procurements (Naegelen, 2002;
Dasgupta and Spulber, 1990, and references therein), supply chain procurements (Chen, 2004, and
references therein). Since the auctioneer is the buyer, the bidders are the suppliers or sellers, and
the object being auctioned is the right to supply, these procurement auctions are also called re-
verse auctions. The use of reverse auctions to award contracts has been vigorously advocated since
competitive bidding results in lower procurement costs, facilitates demand revelation, allows order
quantities to be determined ex-post based on the bids and limits the influences of nepotism and
political ties. Moreover, the advent of the Internet has significantly reduced the transaction costs
involved in conducting such auctions. There is now a large body of literature detailing the growing
importance of reverse auctions in industrial procurement. According to Parente et al. (2001), the
total value of the B2B online auction transactions totaled 109 billion in 1999, and that number was
expected to grow to 2.7 trillion by 2004.

Although auction design is a well-studied problem, the models analyzed thus far do not ade-
quately address the fact that the private information of the bidders is typically multi-dimensional
(cost, capacity, quality, lead times, etc.) and the instruments available to the auctioneer to screen
this private information is also multidimensional, e.g. multiple products, multiple components,
different procurement locations, etc. This paper investigates mechanism design for a one-shot re-
verse auction with divisible goods and capacitated suppliers, i.e. suppliers with finite capacities.
The production capacities, in addition to the production costs, are only known to the respective
suppliers and need to be screened by an appropriate mechanism. Thus, in our model the private
information of the supplier is two dimensional. However, we assume that the suppliers can only
underbid capacity. We show how to construct the optimal revenue maximizing direct mechanism
for this model. Although the general Bayesian mechanism design problem with 2-dimensional types
which is known to be hard, we are able to circumvent the difficulties in the general problem by
exploiting the specific structure of the model, in particular that the suppliers are only allowed to
underbid capacity. The basic insight is that the optimal mechanism does not give any information
rent to a supplier for revealing capacity information when the production cost is known. We also
present a low bid implementation of the optimal auction in a symmetric environment.

The paper is organized as follows. In §1.1 we discuss some of the relevant literature. In § 2 we
describe the model preliminaries. In this section, we also elaborate on the suppliers’ incentive to lie
about capacity and consider various special cases of the procurement auction problem. In § 3 we
present the optimal direct auction mechanism and its implementation via “pay as you bid” reverse
auction. In § 4 we discuss limitations of our model and directions for future research.

1.1 Literature Review

Myerson (1981) first used the indirect utility approach to derive the optimal auction in an indepen-
dent private value (IPV) model. Che (1993) considers 2-dimensional (reverse) auction where the
sellers bid price and quality, and the buyer’s utility is a function of both quality and price. However,
in this model only the costs are private information; thus, the bidder type space is one-dimensional.
Also, Che (1993) only considers sourcing from a single supplier; therefore, the problem reduces to
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one of determining the winning probability instead of the expected allocation. Naegelen (2002)
models reverse auctions for department of defense (DoD) projects by a model where the quality
of each of the firms is fixed and is common knowledge. The preference over quality in this setting
results in virtual utilities which are biased. Again, she only considers the single winner case.

Dasgupta and Spulber (1990) consider a model very similar to the one discussed in this paper
except that the suppliers have unlimited capacity. They construct the optimal auction mechanism
for both single sourcing and multiple sourcing (due to non-linearities in production costs) when the
private information is one-dimensional. Chen (2004) presents an alternate two-stage implementa-
tion for the optimal mechanism in Dasgupta and Spulber (1990). In this alternate implementation
the winning firm is first determined via competition on fixed fees, and then the winner is offered
an optimal price-quantity schedule.

Laffont et al. (1987) solve the optimal nonlinear pricing (single agent principle-agent mechanism
design) problem with a two-dimensional type space. They explicitly force the integrability condi-
tions on the gradient of the indirect utility function. Surprisingly, the optimal pricing mechanism
(the bundle menus) is rather involved even when the prior is uniform. Rochet and Stole (2003) also
provide an excellent survey of multi-dimensional screening and the associated difficulties.

Vohra and Malakhov (2004) describe the indirect utility approach in multi-dimensional discrete
type spaces. They show that network-flow techniques can be used to establish many of the known
results in auction theory in a very elegant and easily interpretable manner. They also show how
to simplify the associated optimization problem by identifying and relaxing provably redundant
incentive compatibility constraints. In Vohra and Malakhov (2005), the authors use these techniques
to identify the optimal mechanisms for an auction with capacitated bidders where both the capacity
and marginal values are private information and the bidders are only allowed to lie about capacities
in one direction. Thus, the model they consider is identical to the one discussed here and to an
extent their work influences the results in this paper. The main methodological contributions that
distinguishes our work are as follows.

(a) In Vohra and Malakhov (2005), the authors restrict attention to only those allocation rules
that are monotone in the capacity dimension (i.e. the “special” type). We show that any
allocation rule that is monotone in the marginal cost for a fixed capacity bid can be made
incentive compatible by offering a side-payment to the suppliers that is only a function of the
capacity bid (see Lemma 1). Thus, the space of all incentive compatible mechanisms is much
larger than the one considered in Vohra and Malakhov (2005). Our characterization result
also implies that the transfer payment is no longer uniquely determined by the allocation
rule.

A reverse auction with capacitated suppliers is special in that the objective does not explicitly
depend on capacity bid – the capacity bid only controls the feasibility of an allocation rule.
This special structure allows one to conclude that, when the prior distribution is regular,
the optimal allocation rule is monotone in the capacity bid and, therefore, the optimal side
payment can be set to zero, i.e. the solution in Vohra and Malakhov (2005) is indeed optimal.

When the objective function explicitly depends on the “special” type, e.g. in bin packing with
privately known weights or scheduling with privately known deadlines, one cannot “regularize”
the prior distribution. Consequently, the mechanism design problem even with one-sided lying
remains a hard problem.
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(b) We develop a new ironing procedure which allows us to characterize the optimal mechanism
under milder regularity conditions. See Section 3.2 for details.

(c) Vohra and Malakhov (2005) study fixed quantity auctions in discrete type space where all the
bidders have a linear utility function. In contrast, we study variable quantity reverse auctions
in a continuous type space. This allows us the flexibility of working with more general utility
structures.

Notation

We denote vectors by boldface lowercase letters, e.g. x. A vector indexed by −i, (for example
x−i) denotes the vector x with the i-th component excluded. We use the convention x = (xi,x−i).
Scalar (resp. vector) functions are denoted by lowercase (resp. boldface) letters, e.g. xi(θi, θ−i)
(resp. x(θi, θ−i)) and conditional expectation of functions by the uppercase of the same letter,
e.g. Xi(θi) ≡ Eθ−i

xi(θi, θ−i) (resp. Xi(θi) = Eθ−i
[xi(θi, θ−i)]. The possible misreport of the true

parameters are represented with a hat over the same variable, e.g. θ̂.

2 Reverse auctions with finite supplier capacities

We consider a single period model with one buyer (retailer, manufacturer, etc.) and n suppliers.
The buyer purchases a single commodity from the suppliers and resells it in the consumer market.
The buyer receives an expected revenue, R(q) from selling q units of the product in the consumer
market – the expectation is over the random demand realization and any other randomness involved
in the downstream market for the buyer that is not contractible. Thus, the side-payment to the
suppliers cannot be contingent on the demand realization. We assume R(q) is strictly concave
with R(0) = 0, R′(0) = ∞ and R′(∞) = 0, so that quantity ordered by the buyer is non-zero and
bounded. Without this assumption the results in this paper would remain qualitatively the same;
however, the optimal mechanism would have a reservation cost above which the buyer will not
order anything. Characterizing the optimal reserve cost is straightforward and is well-studied (see,
e.g. Dasgupta and Spulber, 1990).

Supplier i, i = 1, . . . , n, has a constant marginal production cost ci ∈ [c, c̄] ⊂ (0,∞) and finite
capacity qi ∈ [q, q̄] ⊂ (0,∞). The joint distribution function of marginal cost ci and production
capacity qi is denoted by Fi. We assume that (ci, qi) and (cj , qj) are independently distributed
when i 6= j, i.e. our model is an independent private value (IPV) model. We assume that distri-
bution functions {Fi}n

i=1 are common knowledge; however, the realization (ci, qi) is only known to
supplier i. The buyer seeks a revenue maximizing procurement mechanism that ensures that all
suppliers participate in the auction.

We employ the direct mechanism approach, i.e. the buyer asks suppliers to directly bid their
private information (ci, qi). The revelation principle (see Myerson, 1981; Harris and Townsend,
1981) implies that for any given mechanism one can construct a direct mechanism that has the
same point-wise allocation and transfer payment as the given mechanism. Since both mechanisms
result in the same expected profit for the buyer, it follows that there is no loss of generality in
restricting oneself to direct mechanisms.
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We denote the true type of supplier by bi = (ci, qi) and the supplier i bid by b̂i = (ĉi, q̂i).
Let b = (b1, ...,bn) and b̂ = (b̂1, ..., b̂n). Let B ≡

(
[c, c̄] × [q, q̄]

)n
denote the type space. A

procurement mechanism consists of

(a) an allocation function x : B → Rn
+ that for each bid vector b̂ specifies the quantity to be

ordered from each of the suppliers, and

(b) a transfer payment function t : B → Rn that maps each bid vector b̂ to the transfer payment
from the buyer to the suppliers.

The buyer seeks an allocation function x and a transfer function t that maximizes the ex-ante
expected profit

Π(x, t) ≡ Eb

[
R

(
n∑

i=1

xi(b)

)
−

n∑
i=1

ti(b)

]
subject to the following constraints.

1. feasibility: xi(b) ≤ qi for all i = 1, . . . , n, and b ∈ B,

2. incentive compatibility (IC): Conditional on their beliefs about the private information of
other bidders, truthfully revealing their private information is weakly dominant for all sup-
pliers, i.e.

(ci, qi) ∈ argmax
ĉi∈[c,c̄]
q̂i∈[q,qi]

Eb−i
{ti((ĉi, q̂i),b−i)− cixi((ĉi, q̂i),b−i)} , i = 1, . . . , n, (1)

The above definition of incentive compatibility is called Bayesian incentive compatibility (see
Appendix ??). Note that the range for the capacity bid q̂i is [q, qi], i.e. we do not allow the
supplier to overbid capacity. This can be justified by assuming that the supplier incurs a
heavy penalty for not being able to deliver the allocated quantity.

3. individual rationality (IR): The expected interim surplus of each supplier firm is non-negative,
for all i = 1, . . . , n, and b ∈ B, i.e.

πi(bi) ≡ Eb−i
[ti(b)− cixi(b)] = Ti(ci, qi)− ciXi(ci, qi) ≥ 0. (2)

Here we have assumed that the outside option available to the suppliers is constant and is
normalized to zero.

For any procurement mechanism (x, t), the offered expected surplus ρi(ĉi, q̂i) when supplier i bids
(ĉi, q̂i) is defined as follows

ρi(ĉi, q̂i) = Ti(ĉi, q̂i)− ĉiXi(ĉi, q̂i)

The offered surplus is simply a convenient way of expressing the expected transfer payment. The
expected surplus πi(ci, qi) of supplier i with true type (ci, qi) when she bids (ĉi, q̂i) is given by

πi(ci, qi) = Ti(ĉi, q̂i)− ciXi(ĉi, q̂i) = ρi(ĉi, q̂i) + (ĉi − ci)Xi(ĉi, q̂i).

The true surplus πi equals the offered surplus ρi if the mechanism (x, t) is IC.

To further motivate the procurement mechanism design problem, we elaborate on a supplier’s
incentives to lie about capacity and then consider some illustrative special cases.
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2.1 Incentive to underbid capacity

In this section we show that auctions that ignore the capacity information are not incentive com-
patible. In particular, the suppliers have an incentive to underbid capacity.

Suppose we ignore the private capacity information and implement the classic Kth price auction
where the marginal payment to the supplier is equal to the cost of the first losing supplier, i.e. lowest
cost supplier among those that did not receive any allocation. Then truthfully bidding the marginal
cost is a dominant strategy. However, we show below that in this mechanism the suppliers have
an incentive to underbid capacity. Underbidding creates a fake shortage resulting in an increase
in the transfer payment that can often more than compensates the loss due to a decrease in the
allocation. The following example illustrates these incentives in dominant strategy and Bayesian
framework.

Example 1. Consider a procurement auction with three capacitated suppliers implemented as
the Kth price auction. Let c = 1, c̄ = 5, q = .01 and q̄ = 6. Suppose the capacity realization is
(q1, q2, q3) = (5, 1, 5) and the marginal cost realization is (c1, c2, c3) = (1, 1, 5). Suppose the buyer
wants to procure 5 units and that the spot price, i.e. the outside publicly known cost at which the
buyer can procure unlimited quantity is equal to 10. (We need to have an outside market when
modeling fixed quantity auction because the realized total capacity of the suppliers can be less than
the fixed quantity that needs to be procured.)

Assume that suppliers 2 and 3 bid truthfully. Consider supplier 1. If she truthfully reveals her
capacity, her surplus is $0; however, if she bids q̂1 = 4− ε, her surplus is equal to $9(4− ε). Thus,
bidding truthfully is not a dominant strategy for supplier 1.

Next, we show that for appropriately chosen asymmetric prior distributions supplier 1 has
incentives to underbid capacity even in the Bayesian framework. Assume that the marginal cost
and capacity are independently distributed. Let (c1, q1) = (1, 5). Thus P((1 ≤ c2) ∩ (1 ≤ c3)) = 1.
Let the capacity distribution F q

i , i = 2, 3, be such that P(q2 + q3 ≤ 1) > 1− ε for some 0 < ε � 1.
Then the expected surplus π1(1, 5), if supplier 1 bids her capacity truthfully, is upper bounded by
5 × (c − 1) = 20. On the other hand the expected surplus if she bids 4 − ε is lower bounded by
9× (4− ε)× (1− ε). Thus, supplier 1 has ex-ante incentive to underbid capacity.

Figure 1 shows two uniform price auction mechanisms, the Kth price auction and the market
clearing mechanism. In our model, the suppliers can change the supply ladder curve both in terms
of location of the jumps (by misreporting costs) and the magnitude of the jump (by misreporting
capacity). We know that in a model with commonly known capacities, the fixed quantity optimal
auction can be implemented as Kth price auction. We showed in the example above that in the
Kth price auction with privately known capacity, the suppliers can “game” the mechanism.

This effect is also true if prices are determined by the market clearing condition. Suppose the
suppliers truthfully reveal their marginal costs and the buyer aggregates these bids to form the
supply curve Q(p) =

∑n
i=1 q̂i1{ci≤p}. The demand curve D(p) in this context is given by

D(p) = argmax
u≥0

[R(u)− pu] = (R′)−1(p).

Thus, the equilibrium price p∗ is given by the solution of the market clearing condition (R′)−1(p) =
Q(p∗) (see Figure 1). The model primitives ensure that the market clearing price p∗ ∈ (0,∞).
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Figure 1: Uniform price auctions: Kth price auction and market clearing price auction

In such a setting, as in the K-th price auction, the supplier with low cost and high capacity can
at times increase surplus by underbidding capacity because the increase in the marginal (market
clearing) price can offset the decrease in allocation.

The above discussion shows that both the K-th price auction and the market-clearing mechanism
are not truth revealing. In § 2.2.3 we show that if the suppliers bid the cost truthfully for exogenous
reasons, the buyer can extract all the surplus, i.e. the buyer does not pay any information rent
to the suppliers for the capacity information. In this mechanism the transfer payments are simply
the true costs of the supplier and the quantity allocated is a monotonically decreasing function
of the marginal cost. This optimal mechanism is discriminatory and unique. In particular, with
privately known capacities, there does not exist a uniform price optimal auction. Ausubel (2004)
shows that a modified market clearing mechanism, where items are awarded at the price that they
are “clinched”, is efficient, i.e. socially optimal ((see, also Ausubel and Cramton, 2002)).

2.2 Relaxations

In this section we discuss some special cases of the procurement mechanism design problem formu-
lated in § 2.
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2.2.1 Full information (or first-best) solution

Suppose all suppliers bid truthfully. It is clear that in this setting the surplus of each supplier
would be identically zero. Denote the marginal cost of supplier firm with ith lowest marginal cost
by c[i] and it’s capacity by q[i]. Then the piece-wise convex linear cost function faced by the buyer
is given by

c(x) =
i−1∑
j=1

q[j]c[i] +

x−
i−1∑
j=1

q[j]

 c[i] for
i−1∑
j=1

q[j] ≤ x ≤
i∑

j=1

q[j] (3)

The optimal procurement strategy for the buyer is the same as that of a buyer facing a single
supplier with piece wise linear convex production cost c(x). Clearly, multi-sourcing is optimal with
a number of lowest cost suppliers producing at capacity and at most one supplier producing below
capacity.

Multiple sourcing can also occur in an uncapacitated model when the production costs are
nonlinear. We expect that a risk averse buyer would also find it advantageous to multi-source to
diversify the ex-ante risk due to the asymmetric information. Since, to the best of our knowledge,
the problem of optimal auctions with a risk averse principal has not been fully explored in the
literature, this remains a conjecture.

2.2.2 Second-degree price discrimination with a single capacitated supplier

Suppose there is a single supplier with privately known marginal cost and capacity. Suppose
the capacity and cost are independently distributed. Let F (c) and f(c) denote, respectively, the
cumulative distribution function (CDF) and density of the marginal cost c and suppose the hazard
rate f(c)

F (c) is monotonically decreasing, i.e. we are in the so-called regular care (Myerson, 1981).
Note that this setting is the procurement counterpart of second degree price discrimination in the
monopoly pricing model.

We will first review the optimal mechanism when the supplier is uncapacitated. Using the
indirect utility approach, the buyer’s problem can formulated as follows.

max
x(·)≥0

x(·)monotone

Ec

[
R(x(c))−

(
c +

F (c)
f(c)

)
x(c)

]
. (4)

Let x∗(c) denote the optimal solution of the relaxation of (4) where one ignores the monotonicity
assumption, i.e.

x∗(c) ∈ argmax
x≥0

{
R(x)−

(
c +

F (c)
f(c)

)
x

}
.

Then, regularity implies that x∗ is a monotone function of c, and is, therefore, feasible for (4). The
transfer payment t∗(c) that makes the optimal allocation x∗ incentive compatible is given by

t∗(c) = cx∗(c) +
∫ c̄

c
x∗(u)du.

Since the optimal allocation x∗(c) and the transfer payment t∗(c) are both monotone in c, the cost
parameter c can be eliminated to obtain the transfer t directly in terms of the allocation x, i.e.
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a tariff t∗(x). The indirect tariff implementation is very appealing for implementation as it can
“posted” and the supplers can simply self-select the production quantity based on the posted tariff.

Now consider the case of a capacitated supplier. Feasibility requires that for all c ∈ [c, c̄],
0 ≤ x(c) ≤ q. Suppose the supplier bids the capacity truthfully. (We justify this assumption
below.) Then the buyer’s problem is given by

max
x(·,·)≥0

x(·,q)monotone

E(c,q)

[
R(x(c, q))−

(
c +

F (c)
f(c)

)
x(c, q)

]
(5)

where F denotes the marginal distribution of the cost. Set the allocation x̂(c, q) = min{x∗(c), q},
where x∗ denotes the optimal solution of the uncapacitated problem (4). Then x̂ is clearly feasible
for (5). Moreover,

x̂(c, q) ∈ argmax
0≤x≤q

{
R(x)−

(
c +

F (c)
f(c)

)
x

}
.

Thus, x̂ is an optimal solution of (5). As before, set transfer payment t̂(c, q) = cx̂(c, q)+
∫ c̄
c x̂(u, q)du.

Then, the supplier surplus in the solution (x̂, t̂) is non-decreasing in the capacity bid q. Therefore,
it is weakly dominant for the supplier to bid the capacity truthfully, and our initial assumption is
justified. Note that the supplier surplus π̂(c, q) =

∫ c̄
c x̂(u, q)du.

The fact that the capacitated solution x̂(c, q) = min{x∗(c), q} is simply a truncation of the
uncapacitated solution x∗(c) allows one to implement it in a very simple manner. Suppose the buyer
offers the seller the tariff t∗(x) corresponding to the uncapacitated solution. Then the solution x̃
of the seller’s optimization problem max0≤x≤q{t∗(x)− cx} is given by

x̃ = min{x∗(c), q} = x̂(c, q),

i.e. the quantity supplied is the same as that dictated by the optimal capacitated mechanism.

Define cq = sup{c ∈ [c, c̄] : x∗(c) ≥ q}. Then the monotonicity of x∗(c) implies that

x̃ = x̂(c, q) =

{
x∗(c), c > cq,

q, c ≤ cq.

Then, for all c > cq, the supplier requests x∗(c) and receives a surplus

π̃(c) = t∗(x∗(c))− cx∗(c) =
∫ c̄

c
x∗(u)du =

∫ c̄

c
min{x∗(u), q}du =

∫ c̄

c
x̂(u, q)du = π̂(c, q).

For c ≤ cq, the supplier request q and the surplus

π̃(c) = t∗(q)− cq,

= t∗(x∗(cq))− cqq + (cq − c)q,

= π∗(cq) + (cq − c)q =
∫ c̄

cq

x∗(u)du +
∫ cq

c
qdu =

∫ c̄

c
x̂(u, q)du = π̂(c, q).

Thus, the supplier surplus in the tariff implementation is π̂(c, q), the surplus associated with optimal
capacitated mechanism. Consequently, it follows that the “full” tariff implements the capacitated
optimal mechanism! This immediately implies that the buyer does need to know the capacity of
the supplier, and pays zero information rent for the capacity information. In the next section we
show that the assumption of independence of capacity and cost is critical for this result.
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2.2.3 Marginal Cost common knowledge

Suppose the marginal costs are common knowledge and only the production capacities are privately
known. Then the optimal procurement mechanism maximizes

max
(x,t)

Eq

[
R
(
qi

n∑
i=1

xi(q)
)
−

n∑
i=1

ti(q)

]

such that the expected supplier i surplus Ti(qi) − ciXi(qi) is weakly increasing in qi (IC) and
nonnegative (IR).

Not surprisingly, the first-best or the full-information solution works in this case. Set the
transfer payment equal to the production costs of the supplier, i.e. ti(q) = cixi(q). Then the
supplier surplus is zero and the buyer’s optimization problem reduces to the full-information case.
Since the full-information allocation xi(q̂i, q−i) is weakly increasing in q̂i for all q−i, bidding the true
capacity is a weakly dominant strategy for the suppliers. Thus, the buyer can effectively ignore the
IC constraints above and follow the full information allocation scheme and extract all the supplier
surplus. The fact that, conditional on knowing the cost, the buyer does not offer any informational
rent for the capacity information is crucial to the result in the next section.

3 Characterizing Optimal Direct Mechanism

We use the standard indirect utility approach to characterize all incentive compatible and individu-
ally rational direct mechanisms and the minimal transfer payment function that implements a given
incentive compatible allocation rule (see Lemma 1). The characterization of the transfer payment
allows us to write the expected profit of the buyer for a given incentive compatible allocation rule
as a function of the allocation rule and the offered surplus ρi(c̄, q) (see Theorem 1). To proceed
further, we make the following assumption.

Assumption 1. For all i = 1, 2, · · · , n, the joint density fi(ci, qi) has full support. Therefore, the
conditional density fi(ci|qi) also has full support.

Lemma 1. Procurement mechanisms with capacitated suppliers satisfy the following.

(a) A feasible allocation rule x : B → Rn
+ is IC if, and only if, the expected allocation Xi(ci, qi)

is non-increasing in the cost parameter ci.

(b) A mechanism (x, t) is IC and IR if, and only if, the allocation rule x satisfies (a) and the
offered surplus ρi(ĉi, q̂i) when supplier i bids (ĉi, q̂i) is of the form

ρi(ĉi, q̂i) = ρi(c̄, q̂i) +
∫ c̄

ĉi

Xi(u, q̂i)du (6)

with ρi(ĉi, q̂i) non-negative and non-decreasing in q̂i for all ĉi ∈ [c, c̄].

Remark 1. Recall that the offered surplus ρi is, in fact, equal to the surplus πi when the allocation
rule x (and the associated transfer payment t) is IC.

10



Proof: Fix the mechanism (x, t). Then the supplier i expected surplus πi(ci, qi) is given by

πi(ci, qi) = max
ĉi∈[c,c̄]
q̂i∈[q,qi]

{Ti(ĉi, q̂i)− ciXi(ĉi, q̂i)} . (7)

Note that the capacity bid q̂i ≤ qi, the true capacity. This plays an important role in the proof.
From (7), it follows that for all fixed q ∈ [q, q̄], the surplus πi(ci, qi) is convex in the cost parameter
ci. (There is, however, no guarantee that πi(ci, qi) is jointly convex in (ci, qi).) Consequently, for
all fixed q ∈ [q, q̄], the function πi(ci, qi) is absolutely continuous in c and differentiable almost
everywhere in c.

Since x is IC, it follows that (ci, qi) achieves the maximum in (7). Thus, in particular,

ci ∈ argmax
ĉi∈[c,c̄]

{Ti(ĉi, qi)− ciXi(ĉi, qi)} , (8)

i.e. if supplier i bids capacity q truthfully, it is still optimal for her to bid the cost truthfully. Since
πi(ci, qi) is convex in ci, (8) implies that

∂πi(c, q)
∂c

= −Xi(c, q), a.e. (9)

Consequently, Xi(c, q) is non-increasing in c for all q ∈ [q, q̄]. This proves the forward direction of
the assertion in part (a).

To prove the converse of part (a), suppose Xi(ci, qi) is non-increasing in ci for all qi. Set the
offered surplus

ρi(ĉi, q̂i) = ρ̄i(q̂i) +
∫ c̄

c
Xi(u, q̂i)du

where the function ρ̄i(q̂i) so that ρi(ĉi, q̂i) is non-decreasing in q̂i for all ĉi ∈ [c, c̄]. There are many
feasible choices for ρ̄(q̂i). In particular, if ∂Xi(c,q)

∂q exists a.e., one can set,

ρ̄i(q̂i) = sup
ci∈[c,c̄]

{∫ qi

q

∫ c̄

ci

(∂Xi(t, z)
∂z

)−
dtdz

}
.

For any such choice of ρ̄i, the supplier i surplus

πi(ĉi, q̂i) = ρi(ĉi, q̂i) + (ĉi − ci)Xi(ĉi, q̂i),

= ρ̄i(q̂i) +
∫ c̄

ĉi

Xi(u, q̂i)du + (ĉi − ci)Xi(ĉi, q̂i),

= ρ̄i(q̂i) +
∫ c̄i

ci

Xi(u, q̂i)du +
∫ ci

ĉi

Xi(u, q̂i)du + (ĉi − ci)Xi(ĉi, q̂i),

≤ ρ̄i(q̂i) +
∫ c̄

ci

Xi(u, q̂i)du, (10)

≤ ρ̄i(qi) +
∫ c̄

ci

Xi(u, qi)du, (11)

= Ti(ci, qi)− ciXi(ci, qi) = πi(ci, qi),

11



where (10) follows from the fact that Xi(c, q) in non-increasing in c for all fixed q and (11) follows
from the ρi(ĉi, q̂i) is non-decreasing in q̂i and q̂i ≤ qi. Thus, we have established that it is weakly
dominant for supplier i to bid truthfully, or equivalently x is an incentive compatible allocation.

¿From (9) we have that whenever x is IC we must have that the supplier surplus is of the form

πi(ci, qi) = πi(c̄, qi) +
∫ c̄

c
Xi(u, qi)du.

Since x is IR, πi(c̄i, qi) ≥ 0, and, since x is IC,

qi ∈ argmax
q̂i≤qi

{Ti(ci, q̂i)− ciXi(ci, q̂i)} = argmax
q̂i≤qi

{πi(ci, q̂i)} .

Thus, we must have that πi(ci, qi) is non-decreasing in qi for all ci ∈ [c, c̄]. This establishes the
forward direction of part (b).

Suppose the offered surplus if of the form (6) then (x, t) satisfies IR. Since Xi(ci, qi) is non-
increasing in ci for all qi, it follows that πi(ci, qi) is convex in ci for all qi and ∂πi(ci,qi)

∂ci
= −Xi(ci, qi).

Consequently,

πi(ĉi, q̂i) = ρi(ĉi, q̂i) + (ci − ĉi)
(
−Xi(ĉi, q̂i)

)
≤ πi(ci, q̂i) ≤ πi(ci, qi),

where the last inequality follows from the fact that πi(ci, qi) is non-decreasing in qi for all ci and
q̂i ≤ qi. Thus, we have establishes that (x, t) is IC.
Next, we use the results in Lemma 1 to characterize the buyer’s expected profit.

Theorem 1. Suppose Assumption 1 holds. Then the buyer profit Π(x, t) corresponding to any
feasible allocation rule x : B → Rn

+ that satisfies IC and IR is given by

Π(x, ρ̄) = Eb

[
R

(
n∑

i=1

xi(b)

)
−

n∑
i=1

xi(b)Hi(ci, qi)−
n∑

i=1

ρ̄i(qi)

]
, (12)

where ρ̄i(qi) is the surplus offered when the supplier i bid is (c̄, qi) and Hi(c, q) denotes the virtual
cost defined in Assumption 2.

Remark 2. Theorem 1 implies that the buyer’s profit is determined by both the allocation rule
x and offered surplus ρ̄(q) when supplier i bid is (c̄, q). We emphasize this by denoting the buyer
profit by Π(x, ρ̄) .

Proof: From Lemma 1, we have that the offered supplier i surplus ρi(ci, qi) under any IC and
IR allocation rule x is of the form

ρi(ci, qi) = ρi(c̄, qi) +
∫ c̄

ci

Xi(t, qi)dt

Thus, the buyer profit function is

Π = Eb

[
R

(
n∑

i=1

xi(b)

)
−

n∑
i=1

(
cixi(b) + ρi(c̄, qi)

)]
−

n∑
i=1

(∫ q̄

q

∫ c̄

c

∫ c̄

ci

Xi(ui, qi)duifi(ci, qi)dcidqi

)
.

12



By interchanging the order of integration, we have∫ c̄

c
dcifi(ci, qi)

∫ c̄

ci

duiXi(ui, qi) =
∫ c̄

c
duiXi(ui, qi)

∫ t

c
dcfi(c, qi) =

∫ c̄

c
Xi(ci, qi)Fi(ci | qi)fi(qi)dci.

Substituting this back into the expression for profit, we get

Π(x) = Eb

[
R

(
n∑

i=1

xi(b)

)
−

n∑
i=1

(
cixi(b) + ρi(c̄, qi)

)]
−

n∑
i=1

(∫ q̄

q

∫ c̄

c
Xi(ci, qi)Fi(ci|qi)fi(qi)dcidqi

)
,

= Eb

[
R

(
n∑

i=1

xi(b)

)
−

n∑
i=1

(
cixi(b) + ρi(c̄, qi)

)]
−

n∑
i=1

Eb

[
xi(b)

Fi(ci|qi)
fi(ci|qi)

]

= Eb

[
R

(
n∑

i=1

xi(b)

)
−

n∑
i=1

(
ci +

Fi(ci|qi)
fi(ci|qi)

)
xi(b)−

n∑
i=1

ρi(c̄, qi)

]
.

This establishes the result.
The virtual marginal costs Hi(c, q) in our model are very similar to the virtual marginal costs in
the uncapacitated reverse auction model; except that the virtual costs are now defined in terms of
the distribution of the marginal cost ci conditioned on the capacity bid qi. Thus, the capacity bid
provides information only if the cost and capacity are correlated. (See § 2.2.2 and § 2.2.3 for more
on this issue). Next, we characterize the optimal allocation rule under the regularity Assumption
2 and to a limited extent under general model primitives.

3.1 Optimal mechanism in the regular case

In this section, we make the following additional assumption.

Assumption 2 (Regularity). For all i = 1, 2, · · · , n, the virtual cost function Hi(ci, qi) ≡ ci +
Fi(ci|qi)
fi(ci|qi)

is non-decreasing in ci and non-increasing in qi.

Assumption 2 is called the regularity condition. It is satisfied when the conditional density of the
marginal cost given capacity, is log concave in ci, and the production cost and capacity are, loosely
speaking, “negatively affiliated” in such a way that Fi(ci|qi)

fi(ci|qi)
is nondecreasing in qi. This is true, for

example, when the cost and capacity are independent.

For b ∈ B, define

x∗(b) ≡ argmax
0≤x≤q

{
R

(
n∑

i=1

xi

)
−

n∑
i=1

xiHi(ci, qi)

}
, (13)

where the inequality 0 ≤ x ≤ q is interpreted component-wise. We call x∗ : B → Rn
+ the point-

wise optimal allocation rule. Since (13) is identical to the full information problem with the cost
ci replaced by the virtual cost Hi(ci, qi), it follows that (13) can be solved by aggregating all the
suppliers into one meta-supplier. Denote the virtual cost of supplier with ith lowest virtual cost by
h[i] and the corresponding capacity by q[i]. Then the buyer faces a piece-wise convex linear cost
function h(q) given by

h(q) =
i−1∑
j=1

q[j]h[i] +

q −
i−1∑
j=1

q[j]

 c[i], (14)
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for
∑i−1

j=1 q[j] ≤ q ≤
∑i

j=1 q[j], i = 1, . . . , n, where
∑0

j=1 q[j] is set to zero. From the structure of the
supply curve it follows that the optimal solution of (13) is of the form

x∗[i] =


q[i], [i] < [i]∗,
≤ q[i], [i] = [i]∗,
0, otherwise,

(15)

where 1 ≤ [i]∗ ≤ n.

Lemma 2. Suppose Assumption 2 holds. Let x∗ : B → Rn
+ denote the point-wise optimal defined

in (13).

(a) x∗i ((ci, qi),b−i) is non-increasing in ci for all fixed qi and b−i. Consequently, Xi(ci, qi) is
non-increasing in ci for all qi.

(b) x∗i ((ci, qi),b−i) is non-decreasing in qi for all fixed ci and b−i. Therefore, Xi(ci, qi) is non-
decreasing in qi for all fixed ci.

Proof: From (15) it is clear that x∗((ci, qi),b−i) is non-increasing in the virtual cost Hi(ci, qi).
When Assumption 2 holds, the virtual cost Hi(ci, qi) is non-decreasing in ci for fixed qi; conse-
quently, the allocation x∗i is non-increasing in the capacity bid qi for fixed ci and b−i. Part (a) is
established by taking expectations of b−i. A similar argument proves (b).
We are now in position to prove the main result of this section.

Theorem 2. Suppose Assumption 1 and 2 hold. Let x∗ denote the point-wise optimal solution
defined in (13). For i = 1, . . . , n, set the transfer payment

t∗i (b̂) = ĉiX
∗
i (ci, qi) +

∫ c̄

ĉi

X∗
i ((u, q̂i))du. (16)

Then (x∗, t∗) is Bayesian incentive compatible revenue maximizing procurement mechanism.

Proof: From (12), we have that the buyer profit

Π(x, ρ̄) ≤ Eb

[
max

0≤x≤q

{
R

(
n∑

i=1

xi

)
−

n∑
i=1

xiHi(ci, qi)

}]
= Π(x∗,0).

Thus, all that remains to be shown is that the offered surplus ρ∗i corresponding to the transfer
payment t∗ satisfies ρ̄∗i (qi) = ρ∗i (c̄i, qi) ≡ 0, and (x∗, t∗) is IC and IR.

From (16), it follows that the offered surplus

ρ∗i (ĉi, q̂i) =
∫ c̄

ĉi

X∗
i (u, q̂i)du. (17)

Thus, ρ̄∗i (qi) = ρ∗i (c̄, qi) ≡ 0.

Next, Lemma 2 (a) implies that X∗
i ((ĉi, q̂i),b−i) is non-increasing in ci for all qi. From

Lemma 2 (b), we have that Xi(u, q̂i) is non-decreasing in q̂i. From (17), it follows that πi(ci, qi) is
non-decreasing in qi for all ci. Now, Lemma 1 (b) allows us to conclude that (x∗, t∗) is IC.

Since (x∗, t∗) satisfies IC, the offered surplus ρ∗i (ci, qi) is, indeed, the supplier surplus. Then (17)
implies that (x∗, t∗) is IR.
Next, we illustrate the optimal reverse auction on a simple example.

14



Example 2. Consider a procurement auction with two identical suppliers. Suppose the marginal
cost ci and capacity qi of each of the suppliers are uniformly distributed over the unit square,

fi(ci, qi) = 1 ∀(ci, qi) ∈ [0, 1]2, i = 1, 2.

Therefore, the virtual costs

Hi(ci, qi) = ci +
Fi(ci|qi)
fi(ci|qi)

= ci + ci = 2ci ∀ci ∈ [0, 1], i = 1, 2.

It is clear that this example satisfies Assumption 1 and Assumption 2.

Suppose the buyer revenue function R(q) = 4
√

q. Then, it follows that buyer’s optimization
problem reduces to the point-wise problem

x∗(c,q) = argmax
x≤q

4

√√√√ 2∑
i=1

xi − 2
2∑

i=1

cixi

 .

The above constrained problem can be easily solved using the Karush-Kuhn-Tucker (KKT) condi-
tions which are sufficient because of strict concavity of the buyer’s profit function. For i = 1, 2, the
solution is given by,

x∗i (c, q) =



1
c2i

ci ≤ c−i, qi ≥ 1
c2i

,

qi ci ≤ c−i, qi < 1
c2i

,

0 ci ≥ c−i, q−i ≥ 1
c2−i

,

min
{

max
{

0, 1
c2i
− q−i

}
, qi

}
otherwise.

where −i, is the index of the supplier competing with supplier i. The corresponding expected
transfer payments are given by equation (16).

In order for an allocation rule x to be Bayesian incentive compatible it is sufficient that the
expected allocation Xi(ci, qi) be weakly monotone in ci and qi. Assumption 2 ensures that the
point-wise optimal allocation x∗i is weakly monotone in ci and qi. This stronger property of x∗

can be exploited to show that x∗ can be implemented in the dominant strategy solution concept,
i.e. there exist a transfer payment function under which truth telling forms an dominant strategy
equilibrium.

Theorem 3. Suppose Assumption 1 and Assumption 2 hold. For i = 1, . . . , n, let the transfer
payment be

t∗∗i (b̂) = ĉix
∗
i (b̂) +

∫ c̄

ĉi

x∗i ((u, q̂i), b̂−i)du. (18)

Then, (x∗, t∗∗) is an dominant strategy incentive compatible individually rational revenue maximiz-
ing procurement mechanism.

Proof: It is clear that the buyer profit under any dominant strategy IC and IR mechanism is
upper bounded by the profit Π(x∗,0) of the point-wise optimal allocation x∗. From (18), it follows
that (x∗, t∗∗) is ex-post (pointwise) IR.
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Thus, all that remains is to show that (x∗, t∗∗) is dominant strategy IC. Suppose supplier i
bids (ĉi, q̂i). Then, for all possible misreports b̂ of suppliers other than i, we have

t∗∗i ((ĉi, q̂i), b̂−i)− ĉix
∗
i ((ĉi, q̂i), b̂−i)

=
∫ c̄

ci

x∗i ((u, q̂i), b̂−i)du

+
∫ ci

ĉi

x∗i ((u, q̂i), b̂−i)du− (ci − ĉi)x∗i ((ĉi, q̂i), b̂−i),

≤
∫ c̄

ci

x∗i ((u, q̂i), b̂−i)du, , (19)

≤
∫ c̄

ci

x∗i ((u, qi), b̂−i)du, , (20)

= t∗∗i (bi, b̂−i)− cix
∗
i (bi, b̂−i),

where inequality (19) follows from the fact that x∗i ((ci, qi),b−i) is non-increasing in ci for all
(qi,b−i) (see Lemma 2 (a)) and inequality (20) is a consequence of the fact that x∗i ((ci, qi),b−i)
is non-decreasing in qi for all (ci,b−i) (see Lemma 2 (b)). Thus, truth-telling forms a dominant
strategy equilibrium.

3.2 Optimal Mechanism in the General Case

In this section, we consider the case when Assumption 2 does not hold, i.e. the distribution of the
cost and capacity does not satisfy regularity.

The optimal allocation rule is given by the solution to following optimal control problem

max
x(b),ρ̄(q)

Eb

[
R
( n∑

i=1

xi(b)
)
−

n∑
i=1

Hi(ci, qi)xi(b) + ρ̄i(qi)

]
s.t 0 ≤ xi(ci, qi) ≤ qi ∀i, qi, ci

ĉi ≥ ci ⇒ Xi(ĉi, qi) ≤ Xi(ci, qi) ∀qi, ci, ĉi, i (21)

q̂i ≥ qi ⇒
∫ c̄

ci

(Xi(z, qi)−Xi(z, q̂i))dz ≤ ρ̄i(q̂i)− ρ̄i(qi) ∀ci, qi, q̂i, i

0 ≤ ρ̄i(qi) ∀qi, i

This problem is a very large scale stochastic program and is, typically, very hard to solve nu-
merically. We characterize the solution, under a condition weaker than regularity, which we call
semi-regularity.

We adapt the standard one dimensional ironing procedure (see, e.g. Myerson, 1981) to our
problem which has a two-dimensional type space. Let L(ci, qi) denote the cumulative density along
the cost dimension, i.e.

Li(ci, qi) =
∫ ci

c
fi(u, qi)du
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Since the density fi(ci, qi) is assumed to be strictly positive, Li(ci, qi) is increasing in ci, and hence,
invertible in the ci coordinate. Let

Ki(pi, qi) =
∫ ci

c
Hi(u, qi)fi(u, qi)dt

where ci = Li(·, qi)−1(pi). Let K̂i denote the convex envelop of Ki along pi, i.e.

K̂i(pi, qi) = inf {λKi(a, qi) + (1− λ)Ki(b, qi)|a, b ∈ [0, Li(c̄, qi)], λ ∈ [0, 1], λa + (1− λ)b = pi} .

Define ironed-out virtual cost function Ĥi(ci, qi) by setting it to

Ĥi(ci, qi) =
∂K̂i

∂p
(p, q)

∣∣∣∣∣
pi=Li(ci,qi),qi

wherever the partial derivative is defined and extending it to [c, c̄] by right continuity.

Lemma 3. The function Ki, the convex envelop K̂i and the ironed-out virtual costs Ĥ(ci, qi) satisfy
the following properties.

(a) Ĥi(ci, qi) is continuous and nondecreasing in ci for all fixed qi.

(b) K̂i(0, qi) = Ki(0, qi), K̂i(Li(c̄, qi), qi) = Ki(Li(c̄, qi), qi),

(c) For all qi and pi, K̂i(pi, qi) ≤ Ki(pi, qi).

(d) Whenever K̂i(pi, qi) < Ki(pi, qi), there is an interval (ai, bi) containing pi such that ∂
∂pK̂(p, qi) =

c, a constant, for all p ∈ (ai, bi). Thus, Ĥi(ci, qi) is constant with ci ∈ Li(·, qi)−1((ai, bi)).

See (Rockafeller, 1970) for the proofs of these assertions. Now, we are ready to state our weaker
regularity assumption.

Assumption 3 (Semi-Regularity). For all i = 1, 2, · · · , n, the ironed out virtual marginal produc-
tion cost, Ĥi(ci, qi) is non-increasing in qi.

From Lemma 3 (a) above, it follows that the semi-regularity implies the usual regularity of Ĥi, i.e.
Ĥi satisfies Assumption 2. Theorem 4 shows that if we use this ironed out virtual cost function
in the buyer’s profit function instead of the original virtual cost and then pointwise maximize to
find the optimal allocation relaxing the monotonicity constraints on the optimal allocation and the
side payments ρ̄i, then the resulting mechanism is incentive compatible with ρ̄i = 0 and revenue
maximizing.

Theorem 4. Suppose Assumption 3 holds. Let xI : B → Rn
+ denote any solution of the pointwise

optimization problem

max
0≤x≤q

{
R
( n∑

i=1

xi

)
−

n∑
i=1

xiĤi(ci, qi)

}
.

Set the transfer payment function

tIi(b) = cix
I
i(b) +

∫ c̄

ci

xI
i((u, qi),b−i)du. (22)

Then (xI, tI) is a revenue maximizing, dominant strategy incentive compatible and individually
rational procurement mechanism.
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Proof: Let x be any IC allocation and let ρ denote the corresponding offered surplus. Define

Π̂(x, ρ̄) ≡ Eb

[
R

(
n∑

i=1

xi(b)

)
−

n∑
i=1

xi(b)Ĥi(ci, qi)−
n∑

i=1

ρ̄i(qi)

]
,

i.e. Π̂(x, ρ̄) denotes buyer profit when the virtual costs Hi(ci, qi) are replaced by the ironed-out
virtual costs Ĥi(ci, qi). Then

Π(x, ρ̄)− Π̂(x, ρ̄) =
∫ q̄

q

[∫ c̄

c

(
Ĥi(ci, qi)−Hi(ci, qi)

)
Xi(ci, qi)fi(ci, qi)dci

]
dqi

The inner integral∫ c̄

c

(
Ĥi(ci, qi)−Hi(ci, qi)

)
Xi(ci, qi)fi(ci, qi)dci

=
(
K̂i(ci, t)−Ki(ci, t)

)∣∣∣Li(ci,qi)

0
−
∫ c̄

c

(
K̂i(ci, qi)−Ki(ci, qi)

)
fi(ci, qi)dci [Xi(ci, qi)] ,

= −
∫ c̄

c

(
K̂i(L(ci, qi), qi)−Ki(L(ci, qi), qi)

)
fi(ci, qi)∂ciXi(ci, qi), (23)

≤ 0, (24)

where (23) follows from Lemma 3 (b), and (24) follows from Lemma 3 (c) and the fact that
∂ciXi(ci, qi) ≤ 0 for any IC allocation rule. Thus, we have the Π̂(x,ρ) ≥ Π(x, ρ̄).

A proof technique identical to the one used to prove Theorem 3 establishes that (xI, tI) is
an dominant strategy IC and IR procurement mechanism that maximizes the ironed-out buyer
profit Π̂. Note that the corresponding offered surplus ρ̄I(q) ≡ 0.

Suppose K̂i(L(ci, qi), qi) < Ki(L(ci, qi), qi). Then Lemma 3 (d) implies that Hi(ci, qi) is a
constant for some neighborhood around ci, i.e. ∂ciXi(ci, qi) = 0 in some neighborhood of ci. Con-
sequently, the inequality (24) is an equality when x = xI , i.e. Π̂(xI,ρI) = Π(xI,ρI). This establishes
the result.

Theorem 4 characterizes the revenue maximization direct mechanism when the virtual costs
Hi(ci, qi) satisfy semi-regularity, or equivalently, when the ironed-out virtual costs Ĥi(ci, qi) satisfy
regularity. When semi-regularity does not hold, the optimal direct mechanism can still be computed
by numerically solving the stochastic program (21). Our numerical experiments lend support to
the following conjecture.

Conjecture 5. A revenue maximizing procurement mechanism has the following properties.

(a) The side payments ρ̄ ≡ 0.

(b) There exist completely ironed-out virtual cost functions H̃i such that the corresponding point-
wise solution x̃ = argmax

{
R(
∑

i x̃i(b)) −
∑n

i=1 H̃i(ci, qi)x̃i(b) : 0 ≤ x̃ ≤ q
}

is the revenue
maximizing IC allocation rule.

(c) The ironing procedure and the completely ironed-out virtual costs H̃i(ci, qi) depend on the
revenue function R, in addition to the joint prior.
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Rochet and Chone (1998) presents a general approach for multidimensional screening but in a
model where the agents have both sided incentives.

3.3 Low-bid Implementation of the Optimal Auction

In this section, we assume that all the suppliers are identical, i.e. Fi(c, q) = F (c, q), and that
the distribution F (c, q) satisfies Assumption 1 and Assumption 2. From (16) it follows that the
expected transfer payment

T ∗
i (ci, qi) = ciX

∗
i (ci, qi) +

∫ c̄

ci

X∗
i (u, qi)du

Note that T ∗
i (ci, qi) = 0, whenever X∗

i (ci, qi) = 0. Define a new point-wise transfer payment t̃ as
follows.

t̃i(b) =

(
ci +

∫ c̄
ci

X∗
i (t, qi)dt

X∗
i (ci, qi)

)
x∗i (ci, qi) (25)

Then E(c−i,q−i) [ti(c, q)] = T ∗
i (ci, qi), therefore, (x∗, t̃) is Bayesian IC and IR. We use the transfer

function t̃ to compute the bidding strategies in a “low bid” implementation of the direct mechanism.
The “get-your-bid” auction proceeds as follows:

1. Supplier i bids the capacity q̂i ≤ qi, she is willing to provide and the marginal payment pi she
is willing to accept.

2. The buyer’s actions are as follows:

(a) Solve for the true marginal cost ci by setting1

pi = φ(ci, q̂i) = ci +

∫ c̄
ci

X∗
i (t, q̂i)dt

X∗
i (z, q̂i)

.

(b) Aggregates these bids and forms the virtual procurement cost function c̃ by setting

c̃(q) =
i−1∑
j=1

q̂[j]h[j] +
(
q −

i−1∑
j=1

q̂[j]

)
h[i] (26)

for
∑i−1

j=1 q̂[j] ≤ q ≤
∑i

j=1 q̂[j], where as before h[i] denotes the i-th lowest virtual marginal
cost and q̂[i] is the capacity bid of the corresponding supplier.

(c) Solve for the quantity q̃ = argmax{R(q)− c̃(q)}. Set the allocation

x̃[i] =


q̂[i],

∑i
j=1 q̂[j] ≤ q̃,

q̃ −
∑i−1

j=1 q̂[j],
∑i−1

j=1 q̂[j] ≤ q ≤
∑i

j=1 q̂[j],

0 otherwise.

1We assume that φ(ci, qi) is strictly increasing in ci, for all qi. This would be true, for example when the virtual
costs Hi are strictly increasing in ci. Note that previously, we had been working with allocations that were non-
decreasing.
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3. Supplier i produces x̃i and receives p̃ix̃i.

When all the suppliers are identical, the expected allocation function X∗
i (c, q) is independent of the

supplier index i. We will, therefore, drop the index.

Theorem 6. The bidding strategy

q̃(c, q) = q,

p̃(c, q) = φ(c, q) ≡ c +

∫ c̄
c X∗(t, q)dt

X∗(c, q)
,

is a symmetric Bayesian Nash equilibrium for the “get-your-bid” procurement mechanism.

Proof: Comparing (14) and (26), it is clear that, in equilibrium, x∗(b) = x̃(p,q).

Assume that all suppliers except supplier i use the bidding the proposed bidding strategy. Then
the expected profit πi(p̂i, q̂i) of supplier i is given by

πi(p̂i, q̂i) = (p̂i − ci)X̃i(p̂i, q̂i)
= (p̂i − ci)X∗

i (ĉi, q̂i),

where ĉi given by the solution of the equation p̂i = φ(c, q̂i). Thus, we have that

πi(p̂i, q̂i) ≤ (p̂i − ci)X∗
i (ĉi, qi), (27)

=
∫ c̄

ĉi

X∗(u, qi)du− (ĉi − ci)X∗(ci, qi),

=
∫ c̄

ci

X∗(u, qi)du +
∫ c̄

ĉi

X∗(u, qi)du(ĉi − ci)X∗(ci, qi),

≤
∫ c̄

ci

X∗(u, qi)du = π(p̃(ci, qi), q̃(qi)), (28)

where (27) and (28) follows from, respectively, Lemma 2 (b) and (a). Thus, it is optimal for sup-
plier i to bid according to the proposed strategy.

3.4 Corollaries

Since the point-wise profit in (12) depends on the capacity qi only through the conditional distri-
bution Fi(ci | qi) of the cost ci given capacity qi, the following result is immediate.

Corollary 1. Suppose the marginal cost ci and capacity qi are independently distributed. Then
the optimal allocation rule (and the corresponding transfer function) is insensitive to the capacity
distribution.

Contrasting this result with the “get-your-bid” implementation in the last section, we find that al-
though the optimal auction mechanism is insensitive to the capacity, the supplier bidding strategies
may depend on the capacity distribution.

The following result characterizes the buyers profit function when the suppliers’ capacity is
common knowledge.
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Corollary 2. Suppose suppliers’ capacity is common knowledge. Then the buyers expected profit
under any feasible, IC and IR allocation rule x is given by

Π(x) = Ec

[
R

(
n∑

i=1

xi(c)

)
−

n∑
i=1

xi(c)
(

ci +
Fi(ci)
fi(ci)

)]
(29)

Suppose the buyer wishes to procure a fixed quantity Q from the suppliers. Since a given realization
of the capacity vector q can be insufficient for the needs to the buyer, i.e.

∑n
i=1 qi < Q, we have to

allow for the possibility of an exogenous procurement source. We assume that the buyer is able to
procure an unlimited quantity at a marginal cost c0 > c̄. Let EC(Q) denote the expected cost of
procuring quantity Q by any optimal mechanism.

Corollary 3 (Fixed Quantity Auction). Suppose Assumption 1 and 2 hold. Then

EC(Q) = E(c,q)


min

∑n
i=1 xi(c, q)qiHi(ci, qi) + q0c0

s.t.
∑n

i=1 xiqi + q0 = Q
0 ≤ x ≤ q

 . (30)

Results in this paper can be adapted to other principle-agent mechanism design settings. Con-
sider monopoly pricing with capacitated consumers. Suppose a monopolist seller with a strictly
convex production cost c(x) faces a continuum of customers with utility of the form

u(x, t; θ, q) =
{

θx− t, x ≤ q,
−∞, x > q,

where (θ, q) is the private information of the consumers. The form of the utility function u(x, t; θ, q)
prevents the customer from overbidding capacity. This is necessary for the seller to be able to
check individual rationality. As always the type distribution F : [θ, θ̄] × [q, q̄] → R++ is common
knowledge.

Corollary 4. Suppose the distribution F (θ, q) satisfies the regularity assumption that ν(θ, q) =
θ − 1−F (θ|q)

f(θ|q) is separately non-decreasing in both θ and q. Then the following holds for monopoly
pricing with capacitated buyers.

(a) The seller profit Π(x) for any feasible, IC allocation rule x, the seller expected profit is of the
form

Π(x) = E(θ,q)

[(
θ − 1− F (θ|q)

f(θ|q)

)
x(θ, q)− c(x(θ, q))

]
(b) An optimal direct mechanism is given by the allocation rule

x∗(θ, q) = argmax
0≤x≤q

[(
θ − 1− F (θ|q)

f(θ|q)

)
x− c(x)

]
and transfer payment

t∗(θ, q) =
∫ θ

θ
x∗(t, q)dt
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Since the type space is two-dimensional, the optimal direct mechanism can be implement by a
posted tariff only if the parameter θ and the capacity q are independently distributed.

All our results in this section easily extend to nonlinear convex production cost ci(θ, x), θ ∈ [θ, θ̄],
that are super-linear, i.e. ∂2ci

∂θ∂x > 0. In this case, the virtual production cost Hi(θi, x) is given by

Hi(θi, x) = ci(θi, qi, x) + ciθ(θi, x)
Fi(θi|qi)
fi(θi|qi)

.

4 Conclusion and Extensions

This paper proposes a procurement mechanism that is able to optimally screen for both privately
known capacities and privately known cost information. The results can be easily adapted to other
principle-agent mechanism design problems in which agents have a privately known bounds on
consumption. In Iyengar and Kumar (2006) we show that our model extends to reverse auction
with multiple products when the private information about the cost is one dimensional. In this
report, we also present an application of the multi-product model to auctioning multi-period supply
contract in which a buyer who faces the risk of variable capacities over time can effectively hedge
this risk by committing to order from different suppliers in different periods.

Two very simple natural extensions of the model proposed here lead to hard mechanism design
problems:

(a) Suppose the suppliers can purchase additional capacity at a cost. Then supplier’s utility ex-
plicitly depends on the initial capacity and mechanism design problem is truly 2-dimensional.
Thus, Lemma 1 fails to holds and the mechanism design problem does not appear to have
any tractable formulation.

(b) Suppose the private information about the product cost in the multi-product case is multi-
dimensional. In this case even the uncapacitated version of this problem remains unsolved.
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